
assumed to be 1.5, the pK, of compound C. On the other hand, the pK. 
of protonated alprazolam was determined from the initial absorbance 
at  310 nm after a methanolic solution was diluted to a given pH (Fig. 6); 
the pKtH was 2.40. Note that at 310 nm the opened-ring compound or 
its analogue C absorbed very little UV energy (Fig. 2) and the pH de- 
pendence shown on Fig. 6 should reflect the protonation at N-4. From 
the values of equilibrium pK,, pKtH, and pK:”’, the fractional con- 
centration of important ionic species involved in the A e B equilibrium 
was calculated (Fig. 7). 

The concentration of the opened-ring compound was also estimated 
experimentally. An alprazolam solution in methanol was first acidified 
with HCl and left to attain equilibrium. The mixture was then neutralized 
with an equivalent amount of hydroxide ion and immediately back-ti- 
trated. The titration end point should represent the amount of the 
opened-ring compound which was generated from the acid treatment. 
A critical assumption was that during the neutralization and the titration 
no significant A = B reaction occurred. Since the titration end point 
occurs a t  a pH betweeen 4 and 6, alprazolam was never protonated in the 
titration. Three determinations of the total opened-ring compound by 
this rapid titration technique are shown on Fig. 7 (open circles). Since 
the titration system contained as much as 10% (v/v) methanol, the total 
concentration of the opened-ring compound recovered at  a given pH was 
expected to be much lower than in the absence of methanol. In this par- 
ticular instance, not only should the activity of water have been lower but 
the pK:”was also expected to decrease significantly to result in a dis- 
placement of pH profile for the fractional concentration of opened-ring 
compound toward lower pH. 
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ABSTRACT An approach to analyzing and interpreting kinetic data 
from stability studies using factorial designs is presented. This may be 
useful for screening purposes or as an aid in identifying significant effects 
in complex systems. A typical 2” factorial experiment is discussed, and 
methods of variance estimation and statistical testing are presented. An 
example of simulated data is used to demonstrate how typical results may 
be analyzed, as well as the potential and limitations of this design in in- 
terpretation and construction of kinetic models. 

Keyphrases Factorial designs-in pharmaceutical stability studies, 
kinetic models, statistical analysis Stability studies, pharmaceuti- 
cal-factorial designs, kinetic models, statistical analysis 

Factorial designs are extremely useful in a wide variety 
of experimental situations, and applications of these de- 
signs to pharmaceutical problems have appeared in the 
recent literature (1-3). Factorial designs applied to sta- 

bility studies of pharmaceuticals can be used for screening 
purposes or to help interpret complex systems. This paper 
deals with an approach to the design and statistical anal- 
ysis of such experiments. 

BACKGROUND 

A factorial experiment considers the effects of various factors (e.g., 
temperature, pH, drug concentration, buffer concentration) a t  several 
levels (e.g. ,  2 pHs, one high pH and one low pH) where results of all 
combinations of the factor levels are observed. Modifications of the 
complete factorial design may be used in situations where it is not con- 
venient or possible to do all of the combinations or trials (4). For this 
presentation, only experiments with all factors at two levels, a 2“ factorial 
design (where n is the number of factors, the effects of which are to be 
investigated), will be considered. The main effect is the difference in 
response (e.g., rate constant) caused by the change in level of a factor (pH, 
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for example) averaged over all levels of the other factors. This has 
meaning in a practical sense if the effect of pH is not dependent on the 
levels of the other factors. If the effect of pH is dependent on the level 
of another factor (buffer, for example) an interaction between pH and 
buffer is said to exist. In this case a description of the effect of the factor, 
pH, would not be complete without consideration of the buffer level. This 
concept may be extended to higher order interactions. Thus, if an AB 
interaction exists and is dependent on the level of, say, factor C, the level 
of C should be specified when describing the AB interaction. This latter 
situation describes a 3-factor ABC, interaction. 

A z3 factorial experiment with factors A, B, and C each at two levels 
consists of the following eight trials using the usual notation: (l), a, b, ab, 
c, ac, bc, abc. In this case (1) refers to all factors a t  their low level, a refers 
to the experiment with factor A at the high level and B and C at low levels, 
etc. The main effect of A is computed as l/4 [{a + ab + ac + abc) - {(I) + 
b + c + bc)]; the interaction AB is '/4 [1(1) + ab + c + abc) - {a + b + ac + bcl]; etc. Thus, the results of all experiments are used to calculate each 
main effect and interaction. 

A relatively simple method of calculating the effects, is described by 
Davies (4). 

THEORETICAL 

The usual approach to kinetic studies is to examine, one at a time, the 
factors that are thought to affect the reaction rate. In many cases this 
approach is sufficient, since either some fundamental relationship is to 
be examined, or the effect of the various factors may be fairly well un- 
derstood. One disadvantage of this experimental method is that, when 
present, interactions of factors may not be observed. Usually, little or no 
extra effort is required to uncover all possible effects by use of the factorial 
design. Factorial experiments are particularly advantageous in situations 
in which ( a )  the effects of several factors (and their interactions) are to 
be determined simultaneously in the absence of prior information, ( b )  
a relatively small preliminary screening experiment is desired to obtain 
an estimate of the magnitude of effects of various variables, (c) the effects 
of factors are determined in a complex experimental situation (e.g., many 
simultaneously varied factors), and (d )  the experimental error (e.g., assay) 
is relatively large. Statistical techniques may then be applied to test the 
significance of the main effects and interactions. 

In typical kinetic studies, effects are usually additive. Thus, the fol- 
lowing might describe a kinetic model: 

k o b  = kb[B] t kc[C] + . . . 
in which [B] and [C] might represent hydroxide ion and buffer concen- 
tration, respectively. One objective is to estimate the rate constants, kg, 
kc, etc. 

Since the usual statistical analysis is based on additivity of effects, it 
is important to consider carefully any analyses based on a model that also 
shows multiplicative relationships. For example, if ionic strength were 
a factor, the model could be of the following form: 

koba = f(A)bb [B] k c  [c] . . .I 
in which f(A) is a function of ionic strength. 

If interaction of the multiplicative factor A (e.g., ionic strength) with 
the additive factors B and C is present', the usual statistical analysis will 
be difficult, if not impossible, to interpret. In these cases, it is recom- 
mended that two separate analyses he performed, one at  each level of A. 
Then, the effects of B and C can be estimated under the experimental 
conditions, i .e.,  A constant at either the low or high level. 

If interactions with A are absent, then the usual ANOVA of the rate 
constants (suitably weighted as described below) would, in general, 
provide a valid statistical test for the significance of the BC interaction 
only. The effects of the additive factors will be confounded with the 
multiplicative effects, and the effects of the additive factors should be 
evaluated separately at each level of A. 

The factorial analysis of In k (if CV is small and the k values are suit- 
ably weighted) will result in approximately valid statistical tests for A, 
AB, AC, and ABC under the null hypothesis that AB = AC = 0 (A is as- 
sumed not to interact with the additive factors B and C). In the absence 
of these interactions, the antilog of the A effect approximates the mul- 
tiplicative effect of A (if CV is small). 

Otherwise, the usual assumptions for ANOVA are considered to hold, 
as discussed later in this paper. 

Because of the above implications, some knowledge of the functional 
relationships of the factors is helpful to come to meaningful conclusions. 
This knowledge may come from inspection of the data or from prior ex- 
perience. 

Statistical Considerations-In addition to the additivity concept 
discussed above, other assumptions inherent in the usual analysis of 
factorial experiments are that the errors are normally and independently 
distributed, and the variance (u2) is the same for each observation (ho- 
moscedasticity). In general, this latter assumption does not hold for ex- 
perimentally determined rate constants, and the treatment of the data 
needs special consideration. 

The variation or error in these studies arises from several factors, 
among which are assay error, other manipulative errors, and, possibly, 
the fact that the theoretical functional relationships such as linearity are 
not exactly satisfied. Measurement of the variance may be checked at 
several points during the study. Thus, it is useful during the assay de- 
velopment to check the assay variation at several concentrations of intact 
drug. Often the standard deviation is found to be proportional to the 
concentration of drug, i .e.,  CV is constant; (CV = S/C, where S is the 
standard deviation and C is the concentration.) If the C V is constant and 
not too large, the logarithms of the assayed concentrations will have ap- 
proximately equal variance at different concentration levels of drug (see 
Appendix). In this case the slope of the ordinary least-squares fit of the 
line, In C uersus time (first-order plot), is an unbiased estimate of the rate 
constant, k. The remainder of the discussion will be based on the as- 
sumption that the CV is constant and the reactions follow first-order 
kinetics. Certain modifications of the following analysis may be necessary 
if the kinetics are other than first order (see Appendix). 

The variance of concern is the variation of In C, u2 (which is approxi- 
mately constant). Two estimates of u2 are available: (a) an estimate of 
the variance of In C from replicates of assays of intact drug and ( b )  the 
variance estimate obtained from the least-squares line fit. If the error is 
due only to assay-related variation, these two estimates should show good 
agreement. In general, there will be sources other than assay variation 
contributing to the experimental error, and the line fitting should give 
a more realistic estimate of the variance. Another check on the error es- 
timate could be obtained from replicate runs. (A run consists of deter- 
mining the concentration as a function of time at  specified levels of the 
factors.) Each set of replicates will contribute n - 1 degrees of freedom 
(df)  to the error estimate in which n is the number of replicates. The 
details of this calculation for replicate runs (i.e.,  repeat assessments of 
k with factor levels the same) are described in the Appendix. 

Other studiesZ have shown excellent agreement of the variance estimate 
using replicates and line fitting. The line fitting approach has distinct 
advantages compared with replicates, since less runs are needed and more 
degrees of freedom for error are available. 

An independent estimate of the variance as described is particularly 
important in this type of study. Higher order interaction terms (third 
order or higher) are often assumed to be nonexistent and are used to 
obtain estimates of the error. This approach has the disadvantage of 
yielding few degrees of freedom for error and possibly making false as- 
sumptions about the existence of such interactions. Most importantly, 
the computation of an independent variance estimate enables us to cal- 
culate the significance of the effects and all interactions in a relatively 
uncomplicated manner without prior consideration of the magnitude of 
interaction terms. As previously mentioned, the usual analysis of factorial 
designs assumes the variance of the observations to he equal. Under 
conditions usually present in kinetic studies this will very rarely be the 
gase. The variance of a slope (the rate constant in this case) is u2/Z(t-- 
t )2 ,  in which t is the time at  which the sample is assayed. Since Z ( t  - t ) 2  
will, in general, be different for the different runs, the situation is one of 
variance inequality. The variance of In k is *u2/k2Z(t - t)2, if u2/k2 is 
small (see Appendix). Interestingly, if, for each run, the same number 
of equally spaced time intervals are used _that go to the same point of 
decomposition (say, 1 half-life), k 2 Z ( t  - t ) 2  will be constant, and the 
variance of the In k values will be approximately equal. This situation 
could be closely realized in practice if the approximate magnitude ofthe 
rates were known in advance. Then the usual factorial analysis of the In 
k values_could be used with the variance estimated as u2/K,  with K = 
k 2 Z ( t  - t ) 2 .  In the more realistic case, the variances are expected to differ, 
and, thus, one must approach the analysis differently. Initially, the main 
effects and interactions may be computed in the usual way (4). This is 

A is defined as not interacting if the response at high A is a constant multiple 
of the response at low a for all combinations of the additive factors, i .e . ,  a b h  = ac/c 
= abc/bc = a/(l). 2 To be reported in a subsequent publication; S. Bolton, personal data. 
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Table I-Results of Simulation Study for z3 Factorial (run in 
duplicate) Untransformed Values 

Table 11-Effects Based on Data of Simulation Study 
(Untransformed Values) 

Average Average In 
1 1 Combina- Rate Rate 

tion Constant Constant Z Z ( t  - Tb2 k W Z t  - 
~ 

1.87 0.63 0.77 0.22 
a 3.77 1.38 5.00 0.34 

(1)  

b 3.10 1.16 2.92 0.30 
ab 7.04 1.99 40.00 0.79 

C 3.07 1.20 5.00 0.50 
ac 5.35 1.72 40.00 1.36 
bc 3.67 1.40 8.62 0.60 

abc 8.04 2.11 31.25 0.47 
Average = 4.49 Total 133.56 4.58 

an appropriate unweighted average of the 2" trials. The variance of these 
effects is estimated as described below, and the usual t test is applied by 
forming the ratio: 

I effect I 
JVariance (effect) 

If t exceeds the tabulated a% value with appropriate degrees of free- 
dom, the effect is significant. Nonsignificance does not necessarily mean 
that the effect is not present, but rather that it cannot be dissociated from 
error. This is important because most factors probably will affect the rate 
to some extent. If the effect is so small that it cannot be dissociated from 
error, it would probably not be of interest from a practical standpoint. 
The variance estimates of an effect may be calculated as follows: a main 
effect or interaction is the change in the rate constant due to changes in 
the levels of a factor or combination of factors appropriately averaged 
over all runs: 

t =  

i2Zl/Z(t - t ) 2  
22n-2 52 effect = (Eq. 1) 
~ 

in which 5* is the estimated variance and l/Z(t - T ) 2  is summed over all 
2" trials or runs. 

For In rate constants: 

(Eq. 2) 

In an experiment where many factors are being investigated, it may 
be convenient to look at segments of the data in which some factors are 
kept constant, while others are allowed to vary. The same statistical 
analysis as above may he used, but the summation in Eqs. 1 and 2 will 
include only those experiments that are appropriate to that segment of 
the experiment. 

Example of Analysis-To illustrate the analysis described above, a 
hypothetical experiment was simulated with three factors, each at  two 
levels, conforming to the following model 

The levels of A, B, and C are as follows: 

Factor Low Level High Level 
A 0 0.09 

C 0.1 0.2 
B 10-3 2 x 10-3 

k,, kb ,  and k ,  were assumed to be equal to 1, 1O00, and 10, respec- 
tively. 

A constant 0.2 CV, using random normal deviates, was imposed upon 
concentration readings at arbitrary time intervals, and the rate constants 
were calculated. (Duplicate runs were made for each of the eight combi- 
nations comprising the factorial, a total of 16 runs.) It should be men- 
tioned that this error is relatively large for kinetic work; if anything, one 
should expect better results with real data. Pertinent results are shown 
in Table I. 

The average rate constants and average In rate constants were calcu- 
lated as a weighted average of the resp_ective duplicates with the weights 
being equal to Z(t  - t)2 and k2Z(t - t )2, respectively. The last two col- 
umns in Table I represent the weighting factors for computing the vari- 
ances of the effects for rate constants a;d In rate constants respectively, 
as shown in Eqs. 1 and 2; here BIZ(t - t is the sum from the two rep- 
licates. 

The variance calculated from the line fitting (16 plots of In C versus 
time) was 0.039 with 44 df. The variance calculated from the duplicate 
runs (using rate constants) was 0.060 with 8 d f .  This latter calculation 

Source Average Effect 

A 3.12 
B 1.95 

AB 
C 

AC 
BC 

~~ 

1.03 
1.09 
0.20 

-0.30 
ABC 0.01 

is described in the Appendix. The theoretical value should be 4 . 0 4  (CV 
= 0.22) and the results are within expectation, especially in view of the 
approximations involved. In this case the more dependable value of 0.039 
determined from the least-squares line fitting for the variance will be 
used. 

If the usual analysis on the untransformed rate constants is performed, 
one may expect to obtain estimates only for the BC interaction because 
of the multiplicative effects of A in the model. Table I1 shows the average 
effects based on the rate constants. The variance of an effect, calculated 
according to Eq. 1 is: 

where i2 = 0.039 and the summation includes all runs. The square root 
of the variance yields the standard deviation which, in this case, is 0.57 
[d(0.039)(133.56)/16]. The BC interaction (-0.30) is not significant at 
the 5% level (Fig. 1). Keeping the multiplicative factor (A) constant, the 
results can be examined separately at both levels of A. With A at  the low 
level, Eq. 1 is used where the summation includes readings (l), b, c, and 
bc. The SD of an effect is now 0.206. The results show that the main ef- 
fects, B and C (0.92 and 0.89, respectively) are significant and the BC 
interaction (-0.32) is not. Similarly, an analysis with A a t  the high level 
yields 0.535 SD. As before, both main effects, B and C, are significant 
(2.98 and 1.29) while, again, the interaction (-0.29) is not (Table 111). 

Analysis of the log rate constants gives information on the effect of A 
and its interactions. The calculated effects are listed in Table IV. The 
standard deviation of an effect is 0.106 (Eq. 2). d0.039(4.58)/16. 

The main effect of A is significant, and in the absence of interaction 
the antilog estimates its effect. The antilog of 0.70 is 2.01, which is very 
close to the known effect, 2. The analysis of these results also shows that 
all interactions with A are not significant. The results for B, C, and BC 
are difficult to interpret, since the additive and multiplicative properties 
are now confused with these effects. 

Once the significant effects have been identified, it is of interest to 
estimate the rate constants associated with the different factors, which 
may be hydrogen ion concentration, buffer concentration, ionic strength, 
etc., in a real example. Also, it would be most useful to construct a kinetic 
model that can be used to predict stability under various conditions 
(different levels of the factors). The fitting of such a model, however, 
would be rather precarious in the case of a design with factors a t  only two 
levels. In this situation, responses must be assumed to be linear functions 

0 ,  
10 2 x  10 

B 

0 4  
0 

I a 

0 
0.1 0.2 

C 

0 
0 0.09 

A 

Figure 1--Plot showing lark o f  interaction of factors. Capital letters 
are factors at high levels, lower case letters are factors at low levels. For 
rxarnple. aC is factor A at low level (0) with factor C at high lruel 
(0.2,l. 
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Table 111-Effects a t  Low and Hiah Level of A Table IV-Factorial Analysis of In Rate Constants 

Source Average Effect 

A 0.70 
B 0.43 

AB 0.07 
C 0.32 

A = O  A = 0.09 
Source Average Effect Source Average Effect 

B 
C 
BC 

0.92 

-0.32 
0.89 

B 
C 

BC 

2.98 
1.29 

-0.29 

of the factor levels. If a curved response exists, a 2" design will not be 
sufficient to fit a proper model. 

The rate constant associated with a factor is the slope of the observed 
rate constant versus factor level plot (Fig. 2). For example, in the case 
of factor B, at the low level of A (the multiplicative factor), the main effect 
is 0.92. The term ke can be determined as follows: The average result a t  
the high level of B (2 X is 3.39 (13.10 + 3.67)/2), and the average 
result a t  the low level of B is 2.47 ((1.87 + 3.07)/2). The rate constant, k g ,  
is (3.39 - 2.47)/(2 X = 920. If interactions or multipli- 
cative effects are not present, the rate constants can be simply calculated. 
If interactions exist, kinetic models may not be simply and clearly de- 
scribed in a single equation, and it may be preferable to describe the 
system at each level of the interacting factors. If a multiplicative factor 
is present, one may wish to include this as part of the final model. In this 
example the observed rate constant can be expressed as: 

kobs 1OkAfi ( k g [ B ]  + kc[C]) (Eq. 3) 

- 1 X 

Since interactions are nonsignificant in this example, it is convenient to 
express the kinetics in terms of Eq. 3. 

To determine k ~ ,  proceed as described, but use the main effect of A, 
expressed as loglo: 

One way to estimate k g  to satisfy Eq. 3 is to initially estimate the main 
effect of B, taking into account the multiplicative effect of A. From Table 
11, it is seen that the main effect of B is 1.95, which is the average of the 
main effects a t  low A and high A (10.92 + 2.98)/2), as shown in Table 111. 
Since the result of increasing the level of A is to multiply the effect of B 
by 2.01 (antilog of 0.70), the effect of B can be estimated: 2.01 (B 
effectt,~) + B effectl,,~ = 3.90 (Note: 2.01 (B effectl,,~) = B 
effecthigh '4): 

(Eq. 5) 

1300 (Eq. 6) 

3.90 
3.01 

B effectlow A I - z 1.30 
1.30 

k B  
2 x 10-3 - 1 x 10-3 - 

ln m 
L" 

' W  
L7 

a: 
w > 

a 

a 

1 0 - ~  2 x 1 0 - ~  
B 

Figure 2-Plot showing calculation of effect of factor B at low level of 
/orlor A, averaged over both levels of factor C.  Slope = kB = 920. 

AC 
BC 

ABC 
-0.09 
-0.14 
0.03 

Similarly, k, = 7.24, and the model (Eq. 3) can be estimated: 

koh  = 106(1300[B] + 7.24[C]) (Eq. 7) 

For example, this equation can be used to predict the rate constant with 
the combination, abc (A = 0.09, B = 2 X 

kob = 10~(1300[2 X + 7.2[0.2]) = 8.10 (Eq. 8) 

Without multiplicative effects, a model may also be constructed based 
on multiple regression techniques. In the case of a factorial design, it is 
convenient to use transformed (coded) values of the factor levels, where 
the low level equals -1 and the high level equals +l. The transformation 
is: 

C = 0.2): 

Low Level + High Level 
2 

Factor Level - 

High Level - Low Level 
2 

For Factor B, the transformation is: 
Factor Level - 1.5 X 

0.5 x 10-3 
For transformed values (+1 or -11, in general, the coefficients for factors 
in the model are the main effects divided by 2. With the multiplicative 
factor A equal to 2.01, the coefficients are equal to the main effects di- 
vided by (1 + 2.01) = 3.01. For example, the coefficient for factor B is: 
1.95/3.01= 0.65. When coded values are used, an intercept value is usually 
calculated as the average of the rate constants, 4.49 (Table I). With the 
multiplicative factor A in the model, one can calculate the intercept as 
the average of the rate constants a t  the low level of A as follows: 
2.93 + 6.05 - Average at  low A + average at  high A - = 2.98 (Eq. 11) 

3.01 3.01 

The final equation is: 

k o h  = 1O1.O6(2.98 + 0.65[B'] + 0.36[C']) (Eq. 12) 

where B' and C' are the transformed values3, i.e., the levels are trans- 
formed to equal fl. 

APPENDIX 

( a )  Approximation to the Variance of In y-Using a Taylor series 
expansion, it can be shown that variance (In y )  = CV2 (1 + %CV2 + . . .). 
If the CV is small, variance (In y) = Cv2 = u2/y2. Obviously, the smaller 
the CV, the better the approximation. 

This result may be used to calculate the approximate variance of In 
rate constant, In k. The estimated variance of a rate constant is 22/Z(t 
- t)2. Thus, the approximate variance of In k is i 2 k / k 2  = ? / k 2 Z ( t  - 

(b) The Use of Weighting in Line Fitting and Variance Estima- 
tion-The ordinary least-squares line fitting procedure assumes equal 
variance at  each point, C. If the CV is constant, the variance (u2) is not 
constant, but depends on the value of C. However, in view of the above 
discussion, if the CV is constant, In C has approximately equal variance 
(CV2)  and the fitting of the line, In C versus time, can be computed as 
usual. The residual variance estimates CV2. 

t)2. 

Note that this equation is not exactly equivalent to the equation previously 
constructed due to differences in calculating the multiplicative effect. If the error 
and interactions are small, different ways of calculating the effect of A will be very 
close. Here, where the error is relatively large, the results are equivocal. For example, 
the effect of A can be determined as the antilog of the effect of A when analyzing 
In rate constants (2.01); as the ratio of the average results at high A compared with 
the average at low A (2.01); or aa the average, in this example, of the four ratios of 
the rate at high level with the rate at low level of A under constant conditions of the 
other factors, B and C, i .e. ,  the average of a/(l), abh, ac/c, and abclbc (2.06). 
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If the variance is constant a t  each point C, a fit of In C uersus time 
would require weighting each point proportional to the reciprocal of the 
variance, approximately C2 in the case of constant CV. With constant 
variance, a zero-order plot would require no weighting. 

From similar considerations, an estimate of u2 (equal to C V  in the case 
of constant CV and a first-order reaction) can be obtained from replicate 
determinations of the rate constant using the formula: 

Bw(k - ztc)'/(fl - 1) 
Where Ew is the weighted mean, n is the nu_mber of replications and 

w is Z(t  - 5)2. (Term w is eqgal to k2Z(t - t )2in the case of In k). A 
shortcut formula for Zw(k - k ) 2  is Zwk' - Zw(kw)*. 

An example of some calculations for the combination ab follows. The 
duplic@e determinations of the rate constants were 5.86 and 8.22, and 
Z(t  - t ) l  was 0.0125 for each d_etermination: 

(1) The weighted average, k,, = [(0.0125)5.86 + (0.0125)8.22]/(0.025 + 0.025) = 7.04 (since the weights are equal, the weighted average equals 
the ordinary arithmetic average). 

u2 (One degree of freedom) from the duplicates = [ Z w k 2  - (2) 

Bw(Ew)2]/(n - 1) = [(0.0125)(5.86)2 + (0.0125)(8.22)2 - 0.025 (7.04)2]/1 
= 0.0348 

(3) The weighted average of In k = In k ,  = [(5.86)2(0.0125) In 5.86 + (8.22)2(0.0125)1n 8.22]/[(5.86)2(0.0125) + (6.22)2(0.0125)] = 1.99 
The approximations inherent in the method should be kept in mind, 

namely the transformation to logs and the fact that observed values are 
used rather than true values in the weighting. However, if the C V  is not 
large, the reliability of any conclusions from this analysis should not be 
in doubt. 
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Abstract 0 The kinetics of reaction of the acylating agents trans-cin- 
namic anhydride and trans-cinnamoyl chloride with the hydroxy com- 
pounds n-propyl alcohol and water in the presence of N-methylimidazole 
and 4-dimethylaminopyridine were studied spectrophotometrically in 
acetonitrile solution at 25'. The acid chloride reacted uia the intermediate 
formation of the N-acyl catalyst, which underwent general base-catalyzed 
reaction with the hydroxy compound. The anhydride did not form the 
N-acyl intermediate, but instead underwent direct general base catalysis. 
In the presence of water, all systems formed the N-acyl intermediate. The 
mechanistic route followed by the system was determined by the nucle- 
ophilicity of the catalyst, the ability of the leaving group, and the polarity 
of the solvent. 

Keyphrases Cinnamoylation-hydroxy compounds in acetonitrile, 
catalyzed by N-methylimidazole and 4-dimethylaminopyridine, kinetics 

Kinetics-cinnamoylation of hydroxy compounds in acetonitrile 0 
4-Dimethylaminopyridine catalysis-cinnamoylation of hydroxy com- 
pounds, kinetics N-Methylimidazole catalysis-cinnamoylation of 
hydroxy compounds, kinetics 

Acylation is an important synthetic and analytical re- 
action. Pyridine is the classical acylation catalyst, but 
during the past decade more powerful catalysts have been 
introduced, most notably 4-dimethylaminopyridine, which 
has been used in synthesis (1-4) and analysis (5-8). More 
recently this laboratory introduced N-methylimidazole 
as an analytical acylation catalyst (9-13). 

Acylation reactions are usually carried out in non- 
aqueous solvents. Although the mechanisms of acyl 
transfer in aqueous systems have been well studied (14- 
16), the nature of these reactions in nonhydroxylic solvents 
is not yet understood. Among the features that have been 
suggested as important in determining the kinetics and 
mechanisms of these reactions are the balance between 

nucleophilic and general base catalysis, the complex nature 
of rate equations (17-19), the possibility of kinetically 
significant ion-pair formation (3, 20, 21), competing re- 
actions (22), and formation of molecular complexes (23). 
Some of these factors were addressed in a recent study on 
the kinetics of acetylation of alcohols by acetic anhydride 
and acetyl chloride, catalyzed by N-methylimidazole and 
4-dimethylaminopyridine, in acetonitrile solution (24). 

Since the cinnamoyl group, CsH&H=CHCO, is a 
powerful UV chromophore, it is an interesting analytical 
acyl group (25,26). An earlier study (27) reported the ki- 
netics of hydrolysis of trans -cinnamic anhydride and of 
its reactions with some alcohols, catalyzed by pyridine, 
4-dimethylaminopyridine, and N-methylimidazole, but 
the study was not designed to explore the detailed nature 
of the mechanism. In the present paper the reactions of 
trans -cinnamic anhydride and trans-cinnamoyl chloride 
with n-propyl alcohol and water, in acetonitrile solution, 
are described. The catalysts were N-methylimidazole and 
4-dimethylaminopyridine; the reactions were studied by 
UV spectrophotometry. 

EXPERIMENTAL 

Materials-trans-Cinnamoyl chloride' was distilled under reduced 
pressure to give colorless crystals, mp 34-35' [lit. mp 35-36O (28)]. The 
molar absorptivity a t  298 nm, in acetonitrile, was 2.42 X lo4 liter/mole 
cm. trans-Cinnamic anhydride was synthesized as previously described 
(27), mp 136-137' [lit. mp 136' (29)]. Its molar absorptivity at 294 nm 
was 4.26 X lo4 liter/mole cm. N-Methylimidazole' was distilled under 

Aldrich Chemical Co. 
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